The time it takes to go from human-level AI to superintelligence will be long enough for us to ensure everything is safe.

Scott Alexander has a much more thorough discussion of “takeoff speed” than I do. That is: how long will it take to go from human-level AI to superintelligence?1

2.1: What do you mean by “fast takeoff”?

A slow takeoff is a situation in which AI goes from infrahuman to human to superhuman intelligence very gradually. For example, imagine an augmented “IQ” scale (THIS IS NOT HOW IQ ACTUALLY WORKS – JUST AN EXAMPLE) where rats weigh in at 10, chimps at 30, the village idiot at 60, average humans at 100, and Einstein at 200. And suppose that as technology advances, computers gain two points on this scale per year. So if they start out as smart as rats in 2020, they’ll be as smart as chimps in 2035, as smart as the village idiot in 2050, as smart as average humans in 2070, and as smart as Einstein in 2120. By 2190, they’ll be IQ 340, as far beyond Einstein as Einstein is beyond a village idiot.

In this scenario progress is gradual and manageable. By 2050, we will have long since noticed the trend and predicted we have 20 years until average-human-level intelligence. Once AIs reach average-human-level intelligence, we will have fifty years during which some of us are still smarter than they are, years in which we can work with them as equals, test and retest their programming, and build institutions that promote cooperation. Even though the AIs of 2190 may qualify as “superintelligent”, it will have been long-expected and there would be little point in planning now when the people of 2070 will have so many more resources to plan with.

A moderate takeoff is a situation in which AI goes from infrahuman to human to superhuman relatively quickly. For example, imagine that in 2020 AIs are much like those of today – good at a few simple games, but without clear domain-general intelligence or “common sense”. From 2020 to 2050, AIs demonstrate some academically interesting gains on specific problems, and become better at tasks like machine translation and self-driving cars, and by 2047 there are some that seem to display some vaguely human-like abilities at the level of a young child. By late 2065, they are still less intelligent than a smart human adult. By 2066, they are far smarter than Einstein.

A fast takeoff scenario is one in which computers go even faster than this, perhaps moving from infrahuman to human to superhuman in only days or weeks.

2.1.1: Why might we expect a moderate takeoff?

Because this is the history of computer Go, with fifty years added on to each date. In 1997, the best computer Go program in the world, Handtalk, won NT$250,000 for performing a previously impossible feat – beating an 11 year old child (with an 11-stone handicap penalizing the child and favoring the computer!) As late as September 2015, no computer had ever beaten any professional Go player in a fair game. Then in March 2016, a Go program beat 18-time world champion Lee Sedol 4-1 in a five game match. Go programs had gone from “dumber than children” to “smarter than any human in the world” in eighteen years, and “from never won a professional game” to “overwhelming world champion” in six months.

The slow takeoff scenario mentioned above is loading the dice. It theorizes a timeline where computers took fifteen years to go from “rat” to “chimp”, but also took thirty-five years to go from “chimp” to “average human” and fifty years to go from “average human” to “Einstein”. But from an evolutionary perspective this is ridiculous. It took about fifty million years (and major redesigns in several brain structures!) to go from the first rat-like creatures to chimps. But it only took about five million years (and very minor changes in brain structure) to go from chimps to humans. And going from the average human to Einstein didn’t even require evolutionary work – it’s just the result of random variation in the existing structures!

So maybe our hypothetical IQ scale above is off. If we took an evolutionary and neuroscientific perspective, it would look more like flatworms at 10, rats at 30, chimps at 60, the village idiot at 90, the average human at 98, and Einstein at 100.

Suppose that we start out, again, with computers as smart as rats in 2020. Now we get still get computers as smart as chimps in 2035. And we still get computers as smart as the village idiot in 2050. But now we get computers as smart as the average human in 2054, and computers as smart as Einstein in 2055. By 2060, we’re getting the superintelligences as far beyond Einstein as Einstein is beyond a village idiot.

This offers a much shorter time window to react to AI developments. In the slow takeoff scenario, we figured we could wait until computers were as smart as humans before we had to start thinking about this; after all, that still gave us fifty years before computers were even as smart as Einstein. But in the moderate takeoff scenario, it gives us one year until Einstein and six years until superintelligence. That’s starting to look like not enough time to be entirely sure we know what we’re doing.

2.1.2: Why might we expect a fast takeoff?

AlphaGo used about 0.5 petaflops (= trillion floating point operations per second) in its championship game. But the world’s fastest supercomputer, TaihuLight, can calculate at almost 100 petaflops. So suppose Google developed a human-level AI on a computer system similar to AlphaGo, caught the attention of the Chinese government (who run TaihuLight), and they transfer the program to their much more powerful computer. What would happen?

It depends on to what degree intelligence benefits from more computational resources. This differs for different processes. For domain-general intelligence, it seems to benefit quite a bit – both across species and across human individuals, bigger brain size correlates with greater intelligence. This matches the evolutionarily rapid growth in intelligence from chimps to hominids to modern man; the few hundred thousand years since australopithecines weren’t enough time to develop complicated new algorithms, and evolution seems to have just given humans bigger brains and packed more neurons and glia in per square inch. It’s not really clear why the process stopped (if it ever did), but it might have to do with heads getting too big to fit through the birth canal. Cancer risk might also have been involved – scientists have found that smarter people are more likely to get brain cancer, possibly because they’re already overclocking their ability to grow brain cells.

At least in neuroscience, once evolution “discovered” certain key insights, further increasing intelligence seems to have been a matter of providing it with more computing power. So again – what happens when we transfer the hypothetical human-level AI from AlphaGo to a TaihuLight-style supercomputer two hundred times more powerful? It might be a stretch to expect it to go from IQ 100 to IQ 20,000, but might it increase to an Einstein-level 200, or a superintelligent 300? Hard to say – but if Google ever does develop a human-level AI, the Chinese government will probably be interested in finding out.

Even if its intelligence doesn’t scale linearly, TaihuLight could give it more time. TaihuLight is two hundred times faster than AlphaGo. Transfer an AI from one to the other, and even if its intelligence didn’t change – even if it had exactly the same thoughts – it would think them two hundred times faster. An Einstein-level AI on AlphaGo hardware might (like the historical Einstein) discover one revolutionary breakthrough every five years. Transfer it to TaihuLight, and it would work two hundred times faster – a revolutionary breakthrough every week.

Supercomputers track Moore’s Law; the top supercomputer of 2016 is a hundred times faster than the top supercomputer of 2006. If this progress continues, the top computer of 2026 will be a hundred times faster still. Run Einstein on that computer, and he will come up with a revolutionary breakthrough every few hours. Or something. At this point it becomes a little bit hard to imagine. All I know is that it only took one Einstein, at normal speed, to lay the theoretical foundation for nuclear weapons. Anything a thousand times faster than that is definitely cause for concern.

There’s one final, very concerning reason to expect a fast takeoff. Suppose, once again, we have an AI as smart as Einstein. It might, like the historical Einstein, contemplate physics. Or it might contemplate an area very relevant to its own interests: artificial intelligence. In that case, instead of making a revolutionary physics breakthrough every few hours, it will make a revolutionary AI breakthrough every few hours. Each AI breakthrough it makes, it will have the opportunity to reprogram itself to take advantage of its discovery, becoming more intelligent, thus speeding up its breakthroughs further. The cycle will stop only when it reaches some physical limit – some technical challenge to further improvements that even an entity far smarter than Einstein cannot discover a way around.

To human programmers, such a cycle would look like a “critical mass”. Before the critical level, any AI advance delivers only modest benefits. But any tiny improvement that pushes an AI above the critical level would result in a feedback loop of inexorable self-improvement all the way up to some stratospheric limit of possible computing power.

This feedback loop would be exponential; relatively slow in the beginning, but blindingly fast as it approaches an asymptote. Consider the AI which starts off making forty breakthroughs per year – one every nine days. Now suppose it gains on average a 10% speed improvement with each breakthrough. It starts on January 1. Its first breakthrough comes January 10 or so. Its second comes a little faster, January 18. Its third is a little faster still, January 25. By the beginning of February, it’s sped up to producing one breakthrough every seven days, more or less. By the beginning of March, it’s making about one breakthrough every three days or so. But by March 20, it’s up to one breakthrough a day. By late on the night of March 29, it’s making a breakthrough every second.

The rest of Scott’s article is great too. It was tempting to quote more and more of it. Like, the next section is “2.1.2.1: Is this just following an exponential trend line off a cliff?”, which just strikes me as exactly the right question here. Anyway, see the footnote for more.

Back


  1.  http://slatestarcodex.com/ai-persuasion-experiment-essay-b/ 
Advertisements